01.06.2016 | Article about estimation of beta mixture parameters accepted at WABI 2016

An article by Christopher Schröder and Sven Rahmann about estimating parameters of beta mixture models, which has applications in determining the methylation state of genomic regions, has been accepted at WABI 2016 and will be presented at the conference in Aarhus (Danmark), August 22-24, 2016. The paper will be available in the WABI 2016 proceedings (LNBI series, Springer Verlag) in  August 2016.

A hybrid parameter estimation algorithm for beta mixtures and applications to methylation state classification
by Christopher Schröder and Sven Rahmann

Mixtures of beta distributions have previously been shown to be a flexible tool for modeling data with values on the unit interval, such as methylation levels. However, maximum likelihood parameter estimation with beta distributions suffers from problems because of singularities in the log-likelihood function if some observations take the values 0 or 1. While ad-hoc corrections have been proposed to mitigate this problem, we propose a different approach to parameter estimation for beta mixtures where such problems do not arise in the first place. Our algorithm has significant computational advantages over the maximum-likelihood-based EM algorithm. As an application, we demonstrate that methylation state classification is more accurate when using adaptive thresholds from beta mixtures than non-adaptive thresholds on observed methylation levels.